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A generalization of Unsold’s theorem is derived, giving the sum over both / and m for pro-
ducts of hydrogenic functions with given n. A generalized radial distribution function D,(r) is
introduced and its properties discussed. As n—> oo, D, (r) approaches a universal reduced form,
for which an empirical representation is given.

By Unsold’s theorem [1] the sum over all m states for a shell of hydrogenlike orbi-
tals reduces to a spherically-symmetrical function:

!
Z l‘//nlm(r197¢)|2 =p,,1(r). (1)

m=-—]

For a pure Coulomb potential, the different / states for a given » are also degener-
ate. We present in this paper an explicit form for the sum over both / and m for
hydrogenic orbitals, viz.,

n—1
anl(r) = pn(r). @)
=0

The result is not entirely new [2,3] but we will develop it here in greater detail. We
encounter summations over p,(r) in computation of the Coulomb statistical den-
sity matrix [4,5]. The bound-state contribution is explicitly

i pn(r) e PEn (3)
n=1

We note that, in recent experiments [6], hydrogen atoms have been excited by elec-
tric fields to high Rydberg states in excess of n = 70.
The most straightforward derivation of what we call the “generalized Unsold
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theorem” makes use of the Coulomb Green’s function. First derived in closed
form by Hostler [7], the Green’s function can be expressed as follows [8]:

G+(r1,r2,E)=G+(x,y,k) =—ml___‘ﬁ(éa;—%)g+(xayak)) (4)
where
g+ (x,»,k) = (k)7 (1 — iv) M, (~iky) Wiy (~ikx), (5)

the latter function representing a pseudo one-dimensional Coulomb system. The
coordinate variables x and y are defined by

X=r+rn+ry y=r+r-—r;. (6)
The energy is related to the wavenumber k by ,

E =1I2/2m =k /2 (7)
in the atomic units: i = m = e = 1. We also introduce the parameter

v=_Zlk. (8)

M and W are Whittaker functions as defined by Buchholz [9]. For brevity we write
M;, for M;,, 1, and W, for Wy, 1 2.

We recall the spectral representation of the Green’s function, running over
both discrete and continuum eigenstates:

!//nzm(’l)‘//;zm(’z)
G(rl, rz,E) = - :
25 E,

® Y im(T) Wi m(r2)
+ Iz"; /0 R TR ©)

with Im E >0 for G*. The gamma function has polesatv = —in,n =1, 2, .. ., corre-
sponding to the discrete Coulomb spectrum E, = —Z2/2n%. The corresponding
residues of the Green’s function can evidently be identified with the sum over the
discrete eigenstates of a given n. We define the density function

Pn(r,12) = > Wt (1)Wh s m(r2) (10)
Im .
so that
prlrir) = = (2) (5 =) (2= 2 ) Ma(Z03)Mo(Z0). ay

We have introduced the abbreviation Z, = Z/n. The Whittaker function for inte-
ger narerelated to Laguerre functions as follows:

Z
My(z) =~ e 2LY (z) =z e Fy(n — 1;2;2). (12)
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Also ‘
Wi(z) = (=)"'nIM,(2) . ' (13)

This result also follows from the discrete part of the Coulomb propagator [5], but
the derivation given above is more illuminating.

Note that the density functions, like the Green’s function, have reduced to a
function of just the two configuration variables x and y. Explicitly, the first three
density functions are

p1=(Z%|m) %,

p2 = (Z*[8m)(1 = 3Z€ +32Z°n") €502,
Z3 2 2
py =1 =3 ZE+ HZ2(E +27) - 2% + 53 2] 5, (14)

where

E=(x+»)/2, n=xy.

Application of the above formulas to hybrid atomic orbitals and open-shell compu-
tations has been suggested [8].
The analog of (11) for continuum states works out to

pr(r, ) = Z '//k,z,m(' 1)‘/’Z,z,m(’2)
Im

1 a2 (8 0 . .
=53 IN(1 = iw)|"(x— ) (ax 3 M, (—ikx) M, (—iky) .
(15)
We now specialize p,(ry, ;) tothelimitr; = r, = rorx = y = 2r. The resultis
3
pn(r) = —Zn—" M. (2Z1r)* — My(2Z,r)M" (2Z,7)] . (16)
We can define the generalized radial distribution functions
Da(r) = 4nPpu(r), (17)
which are normalized according to
o0
/ Du(r)dr =, (18)
0

reflecting the orbital degeneracy of the corresponding energy level E,,.
In fig. 1 we show the radial distribution functions for n =1, 2, 5,10, 20 and 50,
with Z = 1. As n increases, the function evidently approaches a universal reduced
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g. 1. Generalized radial distributions functions D,(r) for Z = 1,n =1, 2, 5, 10, 20, 50. Radius r in
bohrs.
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-t

form, apart from some small oscillations. D,(r) exhibits a maximum value
= 0.835 near r ~ 1.5#*/Z. Remarkably, this maximum value is never exceeded for
any value of n. The radial distribution functions decay rapidly beyond r = 2n*/Z
and drop effectively to zero for r ~ 2.1n%/Z. We were not able to derive an analytic
representation for the n — co asymptotic form of D,(r). However, an approximate
representation is suggested by the asymptotic behavior of the Whittaker function
forn>»Zr>»1,viz.,
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M(2Zr/n) ~ ,l_,\/ﬁh(\/g—z') ~ 71;,; (2Zr)cos(VBZr - 3n/4),  (19)

which leads to
Z (2Zr\*?
Da(r) ~ — (7{) : (20)

This suggests the empirical representation:
VA
Du(r) =21+ ap+ bp® + cp* + dp*),  p=2Zr/m. (21)

The best least-squares fit for 0<r<2.1n*/Z is obtained with a = —0.267973,
b =0.0863527, ¢ = —0.0135544, d = —0.00126477. The dashed curve in fig. 2
shows the fitted function with these parameters compared to the accurate radial
distribution function for n = 100.
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Fig. 2. Solid curve: radial distributions function for n = 100. Dashed curve: best fit using eq. (21).
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